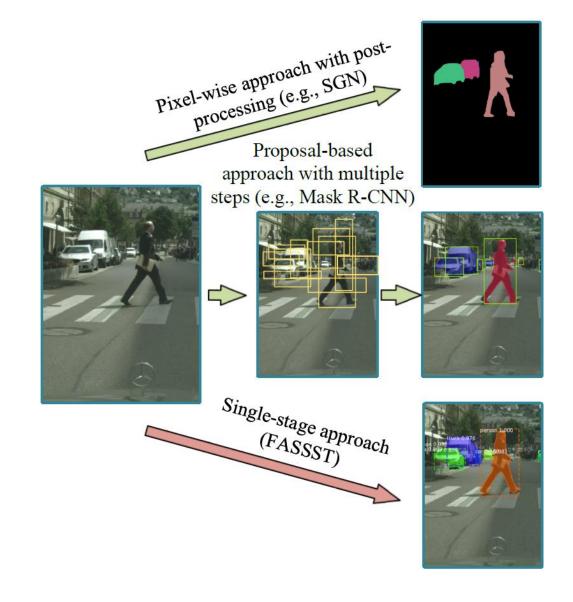


FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time Instance Segmentation

Yuan Cheng^{1,2}, Rui Lin², Peining Zhen¹, Tianshu Hou¹, Chiu Wa Ng², Hai-Bao Chen¹, Hao Yu³, Ngai Wong²

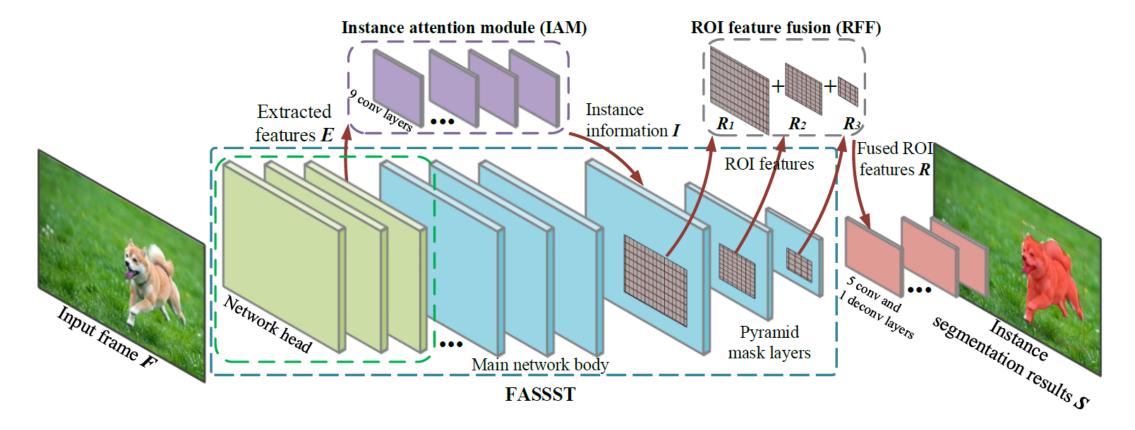
¹ Shanghai Jiao Tong University
² The University of Hong Kong
³ Southern University of Science and Technology


- 1. Background
- 2. FASSST
- 3. Experiments

- 1. Background
- 2. FASSST
- 3. Experiments

Background

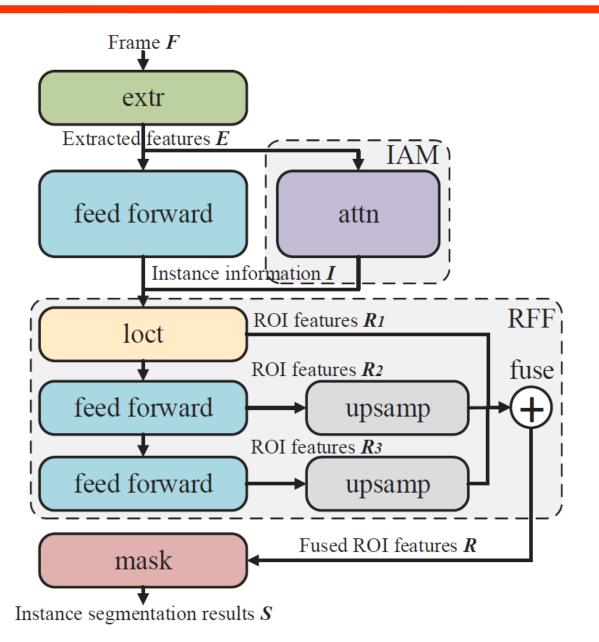
Can automobiles accurately and quickly **locate, classify and segment** instances in real time?


1. Background

2. FASSST

3. Experiments

FASSST Framework


We design FASSST (Fast Attention-based Single-Stage Segmentation NeT) for real-time instance segmentation. Using an **instance attention module (IAM),** FASSST quickly locates target instances and segments with **ROI feature fusion (RFF)** aggregating ROI features from pyramid mask layers.

Working Flow

FASSST quickly locates target instances and segments ROIs by following steps:

- > Step 1, E = extr(F)
- > Step 2, I = attn(E)
- \succ Step 3, $R = fuse(R_1, R_2, R_3)$
- Step 4, get the final instance segmentation results S from R

- 1. Background
- 2. FASSST
- 3. Experiments

Visual Results

On COCO and CityScapes datasets, all existing instances can be **located**, **classified and segmented** precisely in real time.

Accuracy Results

FASSST achieves competitive accuracy using **more compact backbone (MobileNet-54-V2)** for the main network body.

The average AP of FASSST on COCO reaches 34.2, which outperforms various stateof-the-arts and is only slightly lower than Mask R-CNN and SOLO.

Category	Approach	Backbone	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
Pixel-wise	SGN [22]	-	25.0	44.9	25.8	-	-	-
	SSAP [12]	ResNet-101-FPN	29.4	48.1	28.8	-	28.6	-
	FCIS [18]	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
Proposal-based	FCIS+++ [18]	ResNet-101-C5-dilated	33.6	54.5	37.9	-	-	-
	MNC [9]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
	Mask R-CNN [13]	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Single-stage	ExtremeNet [32]	Hourglass-104	18.9	44.5	13.7	10.4	20.4	28.3
	YOLACT [2]	ResNet-101-FPN	31.2	50.6	32.8	12.1	33.3	47.1
	SOLO [28]	ResNet-101-FPN	37.8	59.5	40.4	16.4	40.6	54.2
	SipMask [17]	ResNet-101-FPN	32.8	53.4	34.3	9.3	35.6	54.0
	CenterMask [17]	ResNet-50-FPN	32.9	-	-	12.9	34.7	48.7
	PolarMask [30]	ResNet-101-FPN	30.4	51.9	31.0	13.4	32.4	42.8
Proposed	FASSST	MobileNet-54-V2	34.2	56.4	38.1	14.9	36.7	53.8

Performance Results

- ➤ FASSST reaches 59.2FPS on COCO and is 5.7 × faster than Mask R-CNN.
- Requires FLOPs (71.6G) and storage (36.3MB) on COCO, which are 3.8× and 6.7× smaller than the Mask R-CNN.
- ➤ FASSST achieves 47.5FPS on CityScapes and 2.2 × speedup YOLACT.
- Requires FLOPs (112.8G) and storage (41.3MB) on CityScapes, which are 1.9× and 4.6× smaller than YOLACT.

Approach	FPS	FLOPs (G)	Storage (MB)	Approach	FPS	FLOPs (G)	Storage (MB)
SSAP [12]	5.5	-	-	SegNet [1]	2.4	604.7	112.0
FCIS [18]	6.2	364.1	207.0	SSAP [12]	3.4	-	-
Mask R-CNN [13]	10.3	273.6	242.3	Mask R-CNN [13]	6.9	463.5	245.6
RetinaMask [20]	6.8	358.3	423.6	YOLACT-700 [2]	21.7	214.3	192.0
MS R-CNN [14]	11.5	-	-	PolarMask-800 [30]	18.3	324.8	705.4
YOLACT-550 [2]	41.7	97.3	121.8	FASSST-768	47.5	112.8	43.7
SOLO [28]	22.5	-	422.0				
PolarMask-400 [30]	23.1	248.7	409.3				
FASSST	59.2	71.6	36.3	_			

Thank You!

Contact: Yuan Cheng

cyuan328@sjtu.edu.cn